报告题目:On minimal k-factor-critical planar graphs
报告时间:2024年4月12日(星期五)上午8:30-9:30
报告地点:理学院B315
主办单位:理学院
报告人:卢福良
报告人简介:
卢福良,福建省闽江学者特聘教授,曾入选福建省百千万人才工程。主要研究方向是图的匹配理论及相关问题。在J.Combin.Theory Ser.B,SIAM J.Discrete Math.,Journal of Graph Theory,Electron.J.Comb.,Discrete Math.等杂志发表论文30余篇。
报告内容简介:
A graph G of order n is said to be k-factor-critical (0< k < n) if the removal of any k vertices results in a graph with a perfect matching. A k-factor-critical graph G is minimal if G-e is not k-factor-critical for any edge e in G. In 1998, Favaron and Shi posed the conjecture that every minimal k-factor-critical graph is of minimum degree k+1. We confirm the conjecture for planar graphs.(Joint work with Qiuli Li and Heping Zhang)